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We study energy localization on the oscillator chain proposed by Peyrard and Bishop to model DNA. We
search numerically for conditions with initial energy in a small subgroup of consecutive oscillators of a finite
chain and such that the oscillation amplitude is small outside this subgroup on a long time scale. We use a
localization criterion based on the information entropy and verify numerically that such localized excitations
exist when the nonlinear dynamics of the subgroup oscillates with a frequency inside the reactive band of the
linear chain. We predict a mimium value for the Morse parametersm.2.25d (the only parameter of our
normalized model), in agreement with the numerical calculations(an estimate for the biological value ism
=6.3). For supercritical masses, we use canonical perturbation theory to expand the frequencies of the sub-
group and we calculate an energy threshold in agreement with the numerical calculations.
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I. INTRODUCTION

A plethora of chemical processes involving the DNA mac-
romolecule are known[1–3], for example, the existence of
denaturation bubbles containing a few broken H bonds, and
the transcription process triggered by the bonding of the bio-
chemical complex to a specific region of the DNA(the so-
called TATA box). The oscillator-chain model for DNA[4]
was first proposed to study the thermal denaturation of the
DNA macromolecule, i.e., the separation of the two strands.
The dynamics of this model was first approximated with soli-
ton techniques[5–8]. Our motivation for the present work
was to study this model with methods of finite-dimensional
dynamical systems, which could later be extended to a real-
istic model of DNA without translation symmetry. In this
work we consider a finite chain ofN oscillators with initial
condition restricted to a small group ofn!N of consecutive
oscillators. We define a localized motion as one in which the
amplitude of oscillation is small outside a group ofnmax os-
cillators for all times, withn,nmax!N, and we introduce a
numerical criterion to quantify localization based on the in-
formation entropy. We use the correspondence conjecture
(CC) of Flachet al. [9,10] that the nonlinear dynamics of the
isolated group ofn oscillators must have frequencies inside
the reactive band of the linearized chain for localization to be
possible. Within this conjecture, we show that there is a
minimum value for the Morse parameter(the only parameter
of the model) for a localized excitation to be possible. The
predicted valuem=2.25 agrees with our numerical calcula-
tions. Last, since the linear frequencies of the isolatedn sys-
tem lie in the dispersive band, an immediate consequence of
the CC is that there must be a critical nonzero energy for
localization(namely, for at least one of then frequencies to

exit the dispersive band). For supercritical values of the
Morse parameter, we use canonical perturbation theory to
evaluate the frequency shifts and we predict a threshold en-
ergy for localization in agreement with the numerical calcu-
lations.

For the normalizations that follow, the most convenient
way to introduce the Peyrard-Bishop(PB) model [4] for a
DNA macromolecule is by the Lagrangian

LPB = o
i=1

N
m

2
su̇i

2 + v̇i
2d −

k

2
sui+1 − uid2 −

k

2
svi+1 − vid2

− Dfexp asvi − uid − 1g2, s1d

where ui and v j denote the relative displacements of the
nucleotidic bases at sitesi and j of each DNA strand. The
numberN denotes the number of sites in each strand of the
DNA and can be as large asN,109. For practical reasons
we perform our numerical experiments with up toN=500.
The masses of the bases have a common valuem, the con-
stantk is the longitudinal elastic constant, and the parameters
D anda define the Morse potential describing the transverse
H bonds linking the two chains. The experimental values for
these parameters have been discussed in the literature
[3,13–15]: the mass of the base pairs is about 300 a.m.u.
=5.010−25 kg and the linear spring constant is 0.04 eV/Å2.
The hydrogen bond is modeled by the Morse potential with
a=4.45 Å−1, and forD we take an average of the value for
the guanine-citosine(G-C) base pair and the value for the

thymine-adenine, A-T base pair,D̄=0.04 eV[13].
By means of a rotation of coordinates defined by

xi = sui + vid/Î2,

yi = sui − vid/Î2, s2d

the PB Lagrangian(1) is split into the sumLPB=LX+LY, with*Electronic address: deluca@df.ufscar.br
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LX = o
i=1

N

mẋi
2/2 − ksxi+1 − xid2/2, s3d

depending only on thex coordinates, and withLY depending
only on they coordinates as

LY = o
i=1

N
1

2
mẏi

2 −
k

2
syi+1 − yid2 − D̄fexps− Î2ayid − 1g2.

s4d

The LagrangianLY can be normalized by introducing a di-
mensionless time parametert;Îk/mt and dimensionless co-
ordinatesji ;Î2ayi. The above scalings bringLY of Eq. (4)
to the normal formLY;kL/2a2, with

L = o
i=1

N
1

2
j̇i

2 −
1

2
sji+1 − jid2 −

m2

2
fexps− jid − 1g2, s5d

where the overdot denotes the derivative with respect tot.
Our normalization differs from that of[3], and it was chosen
such that the quartic approximation to Eq.(4) has the form of
the Klein-Gordon oscillator chain studied in[11,12]. We
henceforth study a chain ofN sites with periodic boundary
conditions described by the Lagrangian(5), a dynamical sys-

tem depending on the single parameterm2;4D̄a2/k (hence-
forth called the Morse parameter). Using the values in the
literature[13–15], we estimate a realistic biological value for
m to bem=6.3, and the scaling factors for the units of time
and energy to be 0.810−12 s and 2.010−3 eV, respectively.

For small amplitudes, the normal mode frequency spec-
trum of Eq.(5) is [12]

vskd = Îm2 + 4 sin2sk/2d, s6d

where k=s jp /Nd, j =1, . . . ,N. The range of normal mode
frequenciesmøvøÎm2+4 constitutes the dispersive band,
while the two relations 0øv,m andv.Îm2+4 define the
lower and upper reactive bands, respectively. One expects
that localized motions of the chain with frequency compo-
nents inside the dispersive band will give rise to quasinormal
mode excitations, which are typically delocalized in space.
In such a way the localized state loses its energy in the form
of radiation and spreads out. In contrast, localized excitations
displaying only frequency components inside the two reac-
tive bands are expected to preserve localization for long
times.

There is a large body of studies of one-dimensional
chains, investigating the energy interchange among the “lin-
earized” system modes[16–23]. For initial energy in a few
low-frequency modes, one of us(J.D.L.) has developed the-
oretical descriptions for energy spreading among modes,
valid in various energy ranges, which were compared to nu-
merical results for the Fermi-Pasta-Ulam(FPU) chain
[16–18] and for the Klein-Gordon chain[12]. If the energy is
initially placed in high-frequency modes, the dynamics is
transiently mediated by the formation of unstable nonlinear
structures[20–23]. The mode energy is found to distribute
itself first into a number of structures, localized in space,
each consisting of a few oscillators, which coalesce over

time into a single localized structure, a chaotic breather
(CB). Over longer times the CB is found to break up, with
energy transferred to lower-frequency modes. Recently, there
has been another set of studies of the discretized Klein-
Gordon equation, from the perspective of studying the sta-
bility of breathers, which are chosen as the initial conditions
[24,25]. For a more comprehensive discussion of the exten-
sive research on the dynamics of oscillator chains, see, for
example, Ref.[12].

The study of soliton solutions of the nonlinear partial dif-
ferential equations obtained by multiple-scale expansions
constitutes at present the main line of study of the nonlinear
dynamics of DNA models[5,6,8]. Even though the use of
modulation equations and soliton theory does furnish inter-
esting results, we made the choice here to follow a different
approach, based on normal form methods for low-
dimensional Hamiltonian dynamical systems. The reason for
this choice is that, as is well known, multiple-scale expan-
sions are valid only for initial data varying slowly in real
space and quasimonochromatic in Fourier space, while here
we are interested in the evolution of initial excitations
strongly localized in real space(delocalized in Fourier
space). Moreover, the method used here displays the further
advantage that it could be suitably extended to inhomoge-
neous chain models describing a realistic DNA molecule.

II. THE CORRESPONDENCE CONJECTURE
REVISITED

In what follows we reconsider the correspondence conjec-
ture of Refs.[9,10] in the light of canonical perturbation
theory. With reference to the system(5), let us initially dis-
place from the equilibrium positionj=0 only a finite number
n!N of consecutive particles. For such initial datum, instead
of studying the dynamics of the full chain, involving a large
number of degrees of freedom, we study the dynamics of the
subsystem defined by the Lagrangian(5), with the sum re-
stricted to the sites corresponding to the degrees of freedom
initially excited, and with fixed end boundary conditions for
the next neighbors. Such ann-degree of freedom subsystem
is thought of as isolated and having energyE. This sub-
system can be regarded as a perturbation ofn linearly
coupled oscillators, whose normal mode frequencies
v1, . . . ,vn are shown to lie inside the dispersive band of the
largerN chain. For sufficiently low energies, the dynamics is
quasilinear and its frequency spectrum is close to the normal
mode frequenciesv1, . . . ,vn. According to the CC, if one
uses such initial conditions for the larger lattice, the normal
modes of the larger chain are excited and the initial excita-
tion will spread out, which is what we observe numerically.
With increasing energy, the effect of nonlinearity becomes
prominent, and the frequency spectrum is modified. In the
absence of resonances of third and fourth order(at least) in
the harmonic spectrum of the subsystem, the modes preserve
their identity and we can follow their frequency shifts inside
the dispersive band. According to the CC, one has localiza-
tion for the initial data at a given energy when the frequen-
cies of the corresponding motion of the subsystem are out-
side the dispersive band. Of course this can happen only if
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the energy(i.e., the nonlinearity) is high enough.
The conditions required on the frequency spectrum for

multiperiodic oscillations are much more restrictive and the
localization properties of such states can be very weak[10].
For this reason, we restrict the analysis toperiodic oscilla-
tions only, which amounts to looking for periodic orbits of
the subsystem whose frequency and harmonics lie outside
the dispersive band. This analysis is detailed below.

A. Analysis of the finite subsystems

For the theoretical analysis we consider localized excita-
tions where the amplitude of oscillation is small for sites
outside a group of 1+2r modes, sayui u . r (our i runs in both
negative and positive directions and the central particle isi
=0). Under this conjecture the dynamics for sites on the
right-hand side of the groupsi . rd can be approximated by a
linear chain driven by the given oscillation of oscillatorr
(while the same can be said of the oscillators on the left-hand
side,i ,−r). The equation of motion for the linearized chain
can be derived from the Lagrangian(5) by expanding the
exponential

j̈i = ji+1 + ji−1 − s2 + m2dji, i . r , s7d

where the above linearization holds only for the oscillators
outside the subgroup, which are supposed to oscillate with a
small amplitudesi . rd. The coordinatejrstd of oscillator r
entering into Eq.(7) must be givena priori as a known
forcing term. To solve Eq.(7) by Fourier transform we define
the two-component vector

xi+1 ; Sxi+1svd
xisvd

D . s8d

It can be shown with the help of Eq.(7) thatxi+1 satisfies the
linear matrix iteration law

xi+1 = Ssvo
2 − v2d − 1

1 0
Dxi , s9d

where vo
2;2+m2. For example, in the case of a mono-

chromatic forcing,xr+1svd is nonzero only at a single fre-
quency v̄, and for the iteration of Eq.(9) to produce a
bounded amplitude for sites of largei it is necessary that
sv̄2−vo

2d2.4, which is the definition of the reactive band
(as opposed to the radiation band defined by
m,v,Îm2+4). If the forcing has several large Fourier
components, the first large component might be in the lower
reactive band(v,m ), while the other important harmonics
could be in the upper reactive bandsv.Î4+m2d.

The first subsystem we consider here(henceforth called
the 1 system) is defined byr =0 and consists of the nonlinear
oscillation of a single particle of coordinatexostd with fixed
endssj−1=j1=0d. This nonlinear dynamics can be derived
from the Lagrangian(5) and it is also described by the
Hamiltonian

H =
1

2
p2 + jo

2 +
m2

2
fexps− jod − 1g2. s10d

The frequency of oscillation for the periodic motion of the
Hamiltonian(10) can be determined by a simple quadrature
for any energy, by the formula

v = pFE
j min

j max djo

Î2E − 2jo
2 − m2fexps− jod − 1g2G−1

.

s11d

In Fig. 1 we plot this frequency as a function of the energy
for several values of the parameterm to illustrate that it is
always inside the radiation band form,2.25 at any energy.
This is then the minimum value for them parameter where
localization is possible, as predicted by the correspondence
conjecture for the simple 1 system. It turns out that the bio-
logical value ism=6.3.2.25, in agreement with this theory.
Another agreement with this simple theory is discussed in
the numerical section, as the numerical searches never found
a localized state withm,2.5.

For supercritical values ofm sm.2.25d, the frequency
(11) is in the lower reactive band for a sufficient large en-
ergy. The frequency of small oscillations(zero energy) is
easily obtained by expanding the Hamiltonian(10) to qua-
dratic order, and isvo=Î2+m2.m. The next correction for
small energies can be obtained by expanding the Hamil-
tonian (10) to fourth order injo as

H1
s4d =

1

2
p2 +

1

2
vo

2jo
2 −

m2

2
jo

3 +
7m2

24
jo

4, s12d

where the superscript and subscript onH refer to the order of
the expansion and to the 1 system, respectively. Introducing
action-angle variables and using standard canonical perturba-
tion theory[26], we find that the normal form of the Hamil-
tonian (12) up to second order in the action variableJ is

FIG. 1. Frequency of the nonlinear 1 system divided bym,
sv /md, plotted as a function of the energy form=2 (dashed line),
m=2.25 (solid line), andm=2.5 (dotted line). The horizontal solid
line is v /m=1. Notice that atm=2.25 the frequency line is only
tangent to the critical line. Arbitrary units.
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Ĥ1
s4d = voJ − gsmdJ2, s13d

with

gsmd =
s4m2 − 7d
8sm2 + 2d2 . s14d

Notice that for supercritical values ofm sm.2.25d, the co-
efficient gsmd as defined by Eq.(14) is positivefgsmd.0g,
such that the nonlinear frequency decreases with increasing
energy. Defining the nonlinear frequency byV;]H1

s4d /]J,
the conditionsH1

s4d=Ec and V=]H1
s4d /]J=m determine the

minimum energyEc to be

Ec =
vo

2 − m2

4gsmd
=

4sm2 + 2d2

m2s4m2 − 7d
. s15d

The interpretation of Eq.(15) is as follows. If the isolated
nonlinear oscillator of the 1 system has an energyE.Ec, its
frequency is in the reactive bandsV,md and we expect that
the corresponding type(i) initial condition should produce a
localized excitation, according to the CC. This determination
of the critical energy is compared to the numerical results in
the following section, and it turns out to be short by a factor
of 2. The explanation for this is that the subsystem consisting
of a single oscillator loses a significant amount of energy to
its immediate neighbors, such that one could expect a higher
critical energy. It turns out that the valueEc.1 predicted by
Eq. (15) is precisely a factor of 2 short of the numerical
value Ec.2 for any value ofm. Our simple theory is then
seen to be in only qualitative agreement with the numerical
calculations. A better approximation should be given by a
subsystem consisting of three particles with fixed ends,
which is our next subsystem.

We consider another subsystem(henceforth called the 3
system), consisting of three oscillators along the symmetric
motion defined byj−1=j1. The Lagrangian equations of mo-
tion derived from Eq.(5) with the conditionj−1=j1 corre-
spond to the following two-degrees-of freedom Hamiltonian:

H3 =
1

2
po

2 +
1

4
p1

2 + j1
2 + sjo − j1d2 + m2fexps− j1d − 1g2

+
m2

2
fexps− jod − 1g2. s16d

The two frequencies of the quasiperiodic linear motion at
zero energy are

v1 = Îm2 + 2 −Î2,

v2 = Îm2 + 2 +Î2, s17d

which are inside the dispersive band for anym.
For small energy subsystems Eq.(16) is a perturbation of

two harmonic oscillators with frequenciesv1 and v2 inside
the dispersive band of the whole linearized chain. To com-
pute the leading contribution to the frequency shift of each
oscillator, we must evaluate the next frequency correction in
powers of the actions. One can check that there is no reso-
nance up to fourth order involving the linear part of Eq.(16),
i.e., v1/v2Þ1/2,1/3. Using canonical perturbation theory
[26] we can remove the cubic term from Eq.(16), average
the quartic term, and express the normal form of the Hamil-
tonian (16) up to second order in the actions as

Ĥ3
s4dsJ1,J2d = v1J1 + v2J2 − c1J1

2 − c2J2
2 − c12J1J2, s18d

where theJ’s are the action variables andc1, c2, andc12 are
given by

c1 =
3m2f12m6 + s65 − 26Î2dm4 + s73 − 75Î2dm2 − s42 − 35Î2dg

64v1
4v2

2s4v1
2 − v2

2d
,

c12 =
3m2f36m8 + 147m6 + 4m4 − 278m2 − 98g

16v1
3v2

3s4v1
2 − v2

2ds4v2
2 − v1

2d
,

c2 =
3m2f12m6 + s65 + 26Î2dm4 + s73 + 75Î2dm2 − s42 + 35Î2dg

64v1
2v2

4s4v2
2 − v1

2d
. s19d

The nonlinearly modified frequencies are given by

V1 =
] Ĥ

] J1
= v1 − 2c1J1 − c12J2,

V2 =
] Ĥ

] J2
= v2 − 2c2J2 − c12J1. s20d

For supercritical values ofm the coefficients of Eq.(19)
are all positive, such that the frequencies of Eq.(20) are
decreasing functions of the energy. The two periodic orbits
branching from the linear modes of Eq.(18) are obtained by
setting one of the actions of Eq.(18) to zero. For example,
by substitutingJ2=0 into Eq.(18) we obtain

Ĥ3
s4dsJ1,0d = v1J1 − c1J1

2, s21d

such that the critical energy predicted by settingV1=m is
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Ec
s1d =

v1
2 − m2

4c1
=

2 −Î2

4c1
. s22d

For the other periodic orbit we substituteJ1=0 into Eq.(18),
yielding

Ĥ3
s4ds0,J2d = v2J2 − c2J2

2, s23d

and the critical energy predicted by settingV2=m is

Ec
s2d =

v2
2 − m2

4c2
=

2 +Î2

4c2
. s24d

For values ofm in the intervals2.5,m,30d one sees that
the values ofc1 and c2 are close to the limiting valuesc1

.c2. 3
16, while c12 has the limiting valuec12. 3

4. [It is easy
to obtain this limit by settingv1,v2,m and 4v1

2−v2
2

,4v2
2−v1

2,3m2 into the formulas of Eq.(19).] The limiting
values for the critical energies areEc

s1d=4s2−Î2d /3.0.78
and Ec

s2d=4s2+Î2d /3=4.55. The critical energyEc
s1d=0.78,

obtained for localized excitations generated byJ2=0,agrees
within 25% with the numerical calculations of the next sec-
tion, which determineEc.0.6. For initial conditions in the 3
system, the energy leaking out is compensated by a negative
interaction energy of the 3 system with the rest, such that the
energy inside the 3 system is actually larger than the total
energy(this explains how we have overestimated the critical
energy). The reason for this better agreement is still that, by
increasing the subsystem size, the interaction energy with the
immediate neighbors(whatever its sign) becomes less impor-
tant. Models with more oscillators in the subgroup should
furnish even better approximations, but they are harder to
work out analytically and the corresponding typesnd initial
conditions are computationally more expensive to investi-
gate.

III. NUMERICAL RESULTS

We present numerical results for the DNA oscillator
chain, with initial condition in two different types of oscilla-
tor groups. All of our numerical integrations were performed
with a tenth-order symplectic Runge-Kutta-Nystrom integra-
tor [27]. The high-order integrator can take very large steps,
of about 0.6 of the shortest linear period, and still conserve
energy with a precision of 10−10 even after integration times
of 1010.

A. Macroscopic quantities

The dynamics of the full chain described by the Lagrang-
ian (5) is described by the following Hamiltonian:

H = o
i=−N/

N/2
1

2
pi

2 +
1

2
sji+1 − jid2 +

1

2
m2fexps− jid − 1g2.

s25d

In numerical experiments the instantaneous values of theon-
site oscillator energiesEi, i =1, . . . ,N, are usually calculated
as

Ei ;
1

2
pi

2 +
1

4
sji+1 − jid2 +

1

4
sji+1 − jid2

+
1

2
m2fexps− jid − 1g2, s26d

where we include 50% of the interaction with the oscillator
at each side, such that the sum of theEi is the constant total
energy. Over short times the instantaneous and average val-
ues are nearly the same. The information entropy is defined
by

S= − o
i=1

N

ei ln ei , s27d

whereei =Ei /oi
N Ei are the normalized instantaneous oscilla-

tor energies. In a typical situation where the total energy is
distributed amongr ,N oscillators,r of the ei are of order
1/r and the remaining are negligible, such that Eq.(27) pre-
dicts S. lnsrd. This motivates the definition of

Nosc; expsSd, s28d

as the effective number of oscillators sharing the energy. It is
also convenient to define the normalized parameter

nosc; Nosc/N. s29d

The normalized parameternosc varies from 0 to 1, because
the entropy of Eq.(27) is always less than lnsNd. The instan-
taneous value ofnosc does not asymptote to 1, due to fluc-
tuations. To calculate the effect of fluctuations we introduce
a deviationdei from equipartitionei = ē+dei. Substituting this
into Eq. (29), expanding the logarithm function as lns1
+dei / ēd=dei / ē−s1/2dsdei / ēd2, and performing the summa-
tion over i yields

nosc=
1

N
exph− Nē lnsēd − Nsded2/s2ēdj = exph− Nsdēd2/s2ēdj.

s30d

Taking ē=1/N and making the assumption of normal statis-
tics, that for each normal modesdēd2= ē2 (which is true only
for linearized lattice dynamics), we see thatN cancels, giving
an asymptotic valuenosc=exps−0.5d=0.61. This calculation
shows that the result does not depend on the number of os-
cillators if N is large and also shows why the value is differ-
ent from unity. More accurate calculations have been made,
including the nonlinear terms in the oscillator calculation,
yielding [23]

nosc= 0.74 s31d

at equipartition of energy among the oscillators. These values
have been checked numerically, giving good agreement[23].

Numerical experiments show that for a randomly chosen
localized initial condition the value ofnosc usually starts to
increase and reaches the equipartition valuenosc=0.61 in a
time of the order ofN, which is the typical spread time. Our
localization criterion is that a state is localized when the
value ofnosc is significantly less than the equipartition value
0.61 for more than 50N periodsTf of the fastest linear mode
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sTf =2p /Îm2+4,1d. For the computationally accessible fi-
nite values ofN (of the order of 100), the smallest value of
nosc is obtained for localization in a single site,nosc=1/N,
which is an extreme value. Given thatnosc=0.61 means eq-
uipartition, our practical criterion isnosc,hL;s20/Nd for
t,50N. With this criterion we give the state some room to
breathe, allowing the energy to spread over 20% of the os-
cillators and then to shrink again to a smaller average value.
This practical criterion excludes only very odd localized
states, that would have sudden delocalization bursts, which
was never observed numerically. In the numerical calcula-
tions we use a logarithmic scale for the increasing time, in
the natural units of the Lagrangian(5). The rapid fluctuations
of the instantaneous values are smoothed by the taking the
average of the last five instantaneous values ofnosc, which
are evaluated at a rate of 25 points per decade in time[at
every integer value of 25 lnstd].

Our numerical experiments integrate the dynamics of the
Lagrangian(5) for a chain of N oscillators with periodic
boundary conditions and we shall use two types of initial
conditions, defined as follows.(i) Initial conditions produced
by giving a nonzero position and momentum to a single os-
cillator and a null value for the positions and momenta of all
other oscillators(the value ofnoscat t=0 is 1). (ii ) Symmetric
initial conditions produced by giving a nonzero value for
three consecutive oscillators with the symmetryx−1=x1 and
p−1=p1 (the value ofnosc at t=0 is 3). For example, we have
usedhL=0.2 and we started several(about 50) initial condi-
tions of type(i) with a given energy. For each initial condi-
tion we calculatenosc along the numerical integration and we
stop the integration at the first time thatnosc becomes larger
than hL=0.2, defining a delocalization time for that initial
condition. The maximum value of the delocalization time
sTmaxd among the 50 initial conditions of the same energy is
our measure of localization. Typically, for a chain ofN
=100 oscillators, this value is aboutTmax.100=N for sub-
critical energies; then there is a rapid transition where this
value climbs to aboveTmax=5000. In practice, it is necessary

to stop the numerical integration in the supercritical region
wheneverTmax reaches a maximum value, and we have used
Tmax=53N as a good computationally accessible large num-
ber (53N=5300 if N=100). We experienced with a much
higher threshold forTmax of about 1000N and obtained vir-
tually the same type of transition, but the numerical experi-
ment became very time consuming. The question of whether
this localization time is either infinite, exponentially long, or
simply a very large value is not addressed in the present
work. We have also varied the threshold value ofnosc among
the valueshL=0.15,hL=0.2, andhL=25.N and we obtained
the same transition line. We used forN the three valuesN
=100, N=200, andN=500 and obtained virtually the same
transition lines form.3. A comprehensive statistical analy-
sis has not been performed due to the very long times for

FIG. 2. Tmax as a function of the energy for type(i) initial
conditions atN=100 andm=6.3. Arbitrary units. The squares rep-
resent numerical calculations and the solid line is a spline
interpolation.

FIG. 3. Numerically calculated critical energy for type(i) initial
conditions with N=100 (triangles), N=200 (stars), and N=500
(circles) as a function of the energy. Also plotted is the critical
energy predicted by the 1 system(squares). Arbitrary units.

FIG. 4. Tmax as a function of the energy for type(ii ) initial
conditions atN=100 andm=3.0 (triangles). Arbitrary units. The
triangles represent the numerical calculations and the solid line is a
spline interpolation.
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some runs. Spot checks for a few cases indicate that the
spread from varyingN andhL is less than some few percent
if m.3 andhL, s25/Nd For the region 2.5,m,3 there can
be significant changes in the critical energies determined by
the above procedure. This is because close to the critical
valuem=2.25 the localization length becomes long, and in a
lattice with a smallN this localization is confused with eq-
uipartition by our criterion. It is interesting to recall that
biology chose the safe value ofm=6.3 possibly for the same
reason.

In Fig. 2 we plot the value ofTmax,53N among 49 initial
conditions of type(i) as a function of the energy form=6.3.
Notice the pronounced jump inTmax which is a signature of
localization. We define the critical energy by the inflection
point of theTmax curve, which from Fig. 2 is aboutE.2.3.
This same discontinuous behavior ofTmax is observed in the
numerical calculations for 2.5,m,30, and in Fig. 3 we plot

the critical energy determined by the inflection point ofTmax
and the theoretical predictions for the 1 system, Eq.(15),
versus m. The numerically determined critical energy is
about twice that predicted for the simple 1 system by pertur-
bation theory. This effect is due to the fact that for type(i)
initial conditions a substantial part of the energy leaks to the
immediate neighbors even when there is localization, such
that the total energy of the system at localization is signifi-
cantly larger than the energy of the 1 system.

In Fig. 4 we plotTmax,53N among 49 type(ii ) initial
conditions, as a function of the energy form=3.0 andN
=100, illustrating the same jump that is our signature of lo-
calization. The critical energy predicted by the inflection
point of Fig. 4 is E=0.75. In Fig. 5 we plot the critical
energy determined by the inflection point ofTmax and the
theoretical predictions of the 3 system versusm. The theo-
retical prediction for the 3 system agrees with the numerical
results within 25%. The approximation is better than in the
case of the 1 system because less energy leaks out of the 3
system. For type(ii ) initial conditions there is an interaction
term in the total energy that increases the energy inside the 3
system above the total energy, but the predicted energy is
now only 25% wrong.

In Fig. 6 we plot the modulus of the complex Fourier
transform of the coordinate of the central oscillator for an
initial condition of type(i) of a lattice withm=6.3, N=100,
and a subcritical energyE=0.1. Notice that the Fourier trans-
form develops nonzero components inside the conduction
band 6.3,v,6.61, as illustrated in the inset to Fig. 6.

In Fig. 7 we plot the Fourier transform of the coordinate
of the central oscillator for a localized initial condition of
type (i) in a lattice withm=6.3, N=100, and a supercritical
energyE=3.0, which has a primary peak atv=6.0,m and
goes to zero already atv=6.25,m, in accordance with the
CC.

Last, in Fig. 8 we plot the surface of section of the 3
system withm=6.3 at the supercritical energyE=3, showing
very little stochasticity, to illustrate that localization has
nothing to do with stochasticity within the subgroup, as dis-
cussed in Ref.[10].

FIG. 5. Numerically calculated critical energy for type(ii ) initial
conditions withN=100 as a function ofm (triangles) and critical
energy predicted by the 3 systemEc

s1d (circles), as a function ofm.
Arbitrary units.

FIG. 6. Fourier transform of an initial condi-
tion of type(i) with E=0.1 (subcritical) for a lat-
tice with m=6.3 andN=100. Plotted is the modu-
lus Fsvd of the complex Fourier transform. The
inset magnifies the region nearv=6.3 to display
that Fsvd is not zero inside the conduction band.
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IV. DISCUSSIONS AND CONCLUSION

At a supercritical energy, by searching among 49 initial
conditions of type(i), for example, we have found several
initial conditions that stay localized for more than 105 natural
units. Using a numerical search that varies the initial condi-
tion in the neighborhood of an original localized condition
[28], in a way that maximizes the localization time, we could
easily find other initial conditions that stay localized for a
much larger time, of the order of 107. These refined initial
conditions become restricted to narrow domains, and we be-
lieve that the study of time scales for a localized excitation in
a chain with a finiteN should start from here in future work,

for example, to test if one can increase this time arbitrarily.
At a finite N, if the energy of a type(ii ) initial condition

does not localize in the original 3 system, it will leak out to
the othersN/3d 3 systems of the chain. A simple condition
for these other 3 systems to be “sufficiently linear” is then
that the total energy be less thanNEc/3 (such that the other
3 systems display a quasilinear motion). This intensive con-
dition E,NEc/3 is important to remember in numerical ex-
periments with a finite lattice. For example, for a chain of
N=100 oscillators, this meansE,26.4 and in our numerical
experiments we have always stayed well below this energy.

The critical value ofm for localization sm=2.25d is in
agreement with the numerical calculations, as we never
found localization belowm=2.5. In the region 2.5,m,3.0,
the numerical results indicate that the localization length is
very large, which requires numerical experiments with large
values ofN. The valuem=6.3 estimated from the biological
measurements is far from the critical and in a region where
localization length is small, such that we predict a robust
localization from the above DNA model. The threshold en-
ergy for localization atm=6.3 is 2.2 units or 4.4310−3 eV
(0.17kBT at room temperature). This means that localization
is possible at room temperature, as predicted by our model.
Last, the localization time found numerically is greater than
105 time units or 10−7 s, enough for the biochemical mecha-
nisms to operate. Such localization can be related to the
bubbles in DNA and it would be an auxiliary mechanism in
the transcription process.
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FIG. 7. Fourier transform of an initial condi-
tion of type (i) with E=3.0 for a lattice withm
=6.3 andN=100. Plotted is the modulusFsvd of
the complex Fourier transform. The inset magni-
fies the region nearv=6.0 to display the peak of
Fsvd at v=6.0,m. Notice thatFsvd vanishes
abovev=6.25,m.

FIG. 8. Surface of section of the symmetric 3 system atm
=6.3 andE=3.0, showing little stochasticity. Arbitrary units.
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